and 
Aug 1, 1981

Stanley Mason Is Growing Oil On Trees

Entrepreneurs like Mason are solving our "insolvable" problems.

 

It was like trying to brief a bunch of hummingbirds in an airplane hangar," says Stanley Mason of his first appearance before a U.S. congressional subcommittee.

Mason, the president of Simco Inc., a small research-and-development company, had been invited to talk about how oil-bearing plants like the Chinese tallow tree might help reduce U.S. dependence on foreign oil. But neither his presentation nor his charts nor the suitcase full of tallow-tree seeds seemed to make an impression. The senators kept coming in and out of the hearing room on other business.

Granted, the legislators weren't the first people who refused to give Mason's ideas the attention that the silver-haired entrepreneur thought they deserved. Large companies he had approached had told him that the project was "gang-busters," he says, but they weren't interested in a joint venture because the payback was almost certain to be further out than two years. However, the senators had invited him to speak and -- being new to the subcommittee circuit -- he says he thought the government really was soliciting his help. By the end of the day, when 75 pounds of pea-sized tallow-tree seeds spilled from the suitcase onto the floor of his congressman's office, he figured he could write the trip off as a loss.

It was frustrating. Mason has been convinced for four years that the Chinese tallow tree is part of the solution to one of the country's major problems. You can literally crush the seeds of the tallow tree, filter out the particles, and put the liquid directly into a diesel engine with no processing or refining. The engine will continue to run at the same power level, but the smoke will turn from black to white and smell more like honey cooking than like diesel fumes. The tallow tree produces far more oil and wax per acre than any other vegetable oil plant grown in the United States. Mason thinks enough tallow trees could be grown on marginal land in the United States to replace 5% of the petroleum used in this country, at a cost equal to that of diesel fuel.

But more interesting to Mason than the tallow tree's value as a fuel is its potential for industrial use. The whitish outside part of the seed can be used as a substitute for edible fats, like cocoa butter. The oil can be used in the manufacture of plastics. Chemicals in the seed can be used as a finishing oil in paint. The leftover solids can be compressed and fed to cattle. And branches cut in harvesting the seed can be chopped up and sold as wood chips.

"It's like the pig," says Mason. "You use everything."

But neither the senators nor the large companies seemed to take his plans for the tallow tree seriously. Though Chinese farmers had used its seeds for centuries primarily for making soap, the U.S. market had already rejected it twice -- in the late 1700s and the early 1900s -- as a raw material for commercial production of soap. The tree grew well in the coastal areas of Texas and Florida where it was planted, but the cost of harvesting the seeds by hand, as the Chinese did, was prohibitive in the United States. Mason had come across it in 1978 when Dr. H. W. Scheld, then a researcher at the University of Houston and now the director research and principal scientist for Simco, was studying the tree's potential as a source of woody biomass for the Department of Energy. Mason knew the oil market from a stint he did with the Hunt-Wesson Foods subsidiary of Norton Simon, and he suggested that Scheld look at the tallow tree as a source of edible oil.

Mason was also at Hunt-Wesson during the development of the tomato harvesting machine and figured he could get a tallow-tree harvesting machine designed. But his plans for tallow-tree development would go nowhere if he couldn't find an outside source of money.He had calculated that he would need something like $3 million per year for five years to get it ready for the market.And though Simco is financially successful, he says, like many small companies it doesn't have the resources to fund an idea on that scale.

Funding innovative ideas has never been easy, of course, but some people say the problem is getting worse. United States spending on research and development as a percentage of the Gross National Product has declined steadily, if not dramatically, since 1964, from 2.97% of the GNP to an estimated 2.33% in 1980. By contrast, West Germany and Japan have been spending an increasing percentage of their GNPs on R&D.

The government funds about 60% of all R&D in the United States, and well over half of that goes to defense and space projects, which have only indirect application to commercial markets. President Reagan proposes to boost the space and defense portion of government-funded R&D to 68% in 1982, up from 60% in 1980.

And where does this money go? Last year, the government spent almost $31.7 billion on R&D, about 70% of that in private industry. (The rest went to government labs and universities.) But R&D grants and contracts awarded to companies with fewer than 500 employees accounted for less than 4% of the government's total R&D expenditures.

The odds are decisively against the small-company entrepreneur.

"This country is horribly underfunding start-up research and development," says William Chandler, founder and president of Bay Venture Management, a San Francisco venture capital firm that specializes in start-ups. "People with good ideas have a much more difficult time getting money than their track records justify."

Stanley Mason is a prime example. Mason brought the world an eclectic variety of products including the first "no-glug" plastic bottle, the first form-fitting disposable diaper with tabs, a burglar alarm that hangs on a door knob and goes off when anyone touches the knob, Masonware microware cooking dishes, and fertilizer printed on the back of black plastic for gardens.

 1 | 2 | 3  NEXT