Oct 1, 2008

Blue is the New Green

Forget for a moment about carbon emissions. The world is facing a more immediate crisis -- it is running out of clean water. The prospect of widespread shortages is creating a new kind of new economy. Meet 11 entrepreneurs who are ahead of the curve, finding opportunity in the largest emerging market the world has seen in some time.

George Diebold/Getty

 

Alfred Pasieka/Photo Researchers

PROBLEM: Getting fresh-water where there isn't any. SOLUTION: Mobile desalination units. Salt crystals, magnified 16 times


Chang W. Lee/The New York Times/Redux

PROBLEM: Contaminated storm- and water runoff. SOLUTION: Scrub the dirty water clean before it enters the sewer system. Toxic street runoff in Lake Tai, Jiangsu province, China

First, some numbers. The United Nations estimates that by 2025, two-thirds of the world's population will face periodic and often severe water shortages. And the problem is not limited to the developing world. Here in the U.S., water managers in 36 states are predicting significant shortfalls within the next decade. Even in regions that do have sufficient supplies, aging infrastructure, inadequate treatment facilities, and contamination pose more problems. No surprise, then, that battles over water rights are becoming commonplace, pitting states and sometimes nations against one another in increasingly bitter conflict.

Analysts estimate that the world will need to invest as much as $1 trillion a year on conservation technologies, infrastructure, and sanitation to meet demand through 2030. As in the past, most of the large capital-intensive projects will be done by the usual multinational corporations and engineering firms. But the extent of the problem and the demand for new technology to address it present -- pardon the metaphor -- a kind of perfect storm for entrepreneurs. "Small companies with intellectual property, significant know-how, and a product that's scalable can stake out a niche below the radar of the large companies," says Laura Shenkar, a water expert and consultant in San Francisco. "This is an opportunity that will generate Googles."

In the pages that follow, Inc. examines the emerging water economy and takes a trip along the water trail, from source to sewer. Our guides on this journey: 11 extraordinary entrepreneurs who are creating radical change at every step of the way. Some of their innovations are striking in their simplicity. Mark Sanders's AQUS System uses water from bathroom sinks to fill toilet bowls. Others push at the limits of science and technology. Fatemeh Shirazi, for example, is "training" microorganisms to kill pollutants in water. What they share is a vision, a drive, and an address -- the sweet spot at which blue meets green.

Increasing the Supply

Born in Swaziland, raised in Zimbabwe, and educated in South Africa, Amanda Brock knows what water scarcity looks like. "I have seen and lived through waterborne diseases, childhood mortality, cholera, typhoid," she says. "I have lived the poverty that comes from inadequate access to a fundamental resource like water. And with global warming, it's getting worse."

The desire to do something about it is what led the former Enron executive and water-industry consultant to take the CEO spot at Water Standard, a start-up founded by Florida entrepreneur Andrew Gordon. Water Standard plans to bring water to dry regions in a new way: by installing state-of-the-art desalination plants inside retrofitted tankers and delivering freshwater, via pipeline or by ship, to thirsty cities on the shore.

The ships, which Brock says can be outfitted in less than a year at a cost of about $150 million, will be anchored from one to five miles offshore and will be capable of producing up to 75 million gallons of freshwater a day -- enough to meet the basic residential water needs of a small city. And because they will operate in deep water rather than close to shore, the ship-based plants should promise to virtually eliminate the negative environmental side effects often cited by critics of desalination.

Specially designed intakes will draw seawater from a greater depth and at a slower speed than typical desalination facilities, thus reducing injury to aquatic life, and the concentrated brine produced in the desalination process will be thoroughly and rapidly diluted before it is returned to the sea, far from the more ecologically sensitive zone close to shore. While the ship-based plants will have a carbon footprint -- initially, they will run on marine-gas turbines or new emissions-compliant diesel generators -- Brock hopes eventually to generate energy using ocean-current or wave-action turbines.

Freshwater already is exported via tankers between France and Algeria and Turkey and Israel. And smaller-scale barge-based desalination systems operate in the Middle East and India. Tom Pankratz, a desalination consultant and the editor of Water Desalination Report, expects mobile barge- and ship-mounted systems to play an important role in increasing the supply of freshwater -- whether by addressing site-specific environmental concerns or space limitations, getting facilities up and running faster than the two to seven years it takes to construct a land-based plant, or responding to emergency or temporary needs.

Investors seem to like the idea. In March, Water Standard secured $250 million in venture funding, one of the largest investments to date for a water start-up. The company's first vessel -- a tanker that's currently used to transport vegetable oil -- should be ready to sail sometime in 2009. And thanks to recent regulations requiring that oil tankers be double hulled, there is an abundance of older single-hulled ships that are perfectly suited to join the fleet. Brock has spent much of the past year meeting with investors and potential customers in the Middle East, Chile, Cyprus, India, and China.

Whether based on land or at sea, almost all desalination plants built after 2000 use a technology called reverse osmosis, or RO, to get the salt out. Water is pushed at high pressure through a membrane that lets freshwater pass through but blocks salt and contaminants. RO technology is generally more efficient than other desalination methods that use heat to evaporate and distill water, but it still requires a lot of energy -- at seawater plants, almost half the costs are for the electricity required to push water through the membranes. This makes desalination one of the most expensive ways to produce freshwater: The cost of producing 1 cubic meter (264 gallons) of desalinated water ranges from about $1 to $1.50, compared with 10 cents to 20 cents to obtain water from a reservoir or well. (Average U.S. daily household use is about 350 gallons.)

 1 | 2 | 3 | 4 | 5 | 6 | 7  NEXT